Li Hui, Wang Chi, Zhang Beichen. Variation characteristics of cusp configuration based on T96 model. Chin. J. Space Sci., 2012, **32**(4): 461-468

基于 T96 模型的极尖区位形变化特性研究*

李晖^{1,2} 王赤¹ 张北辰³

1(中国科学院空间科学与应用研究中心 空间天气学国家重点实验室 北京 100190)

2(中国科学院研究生院 北京 100049)

3(中国极地研究中心 上海 200136)

摘要 基于 T96 模型, 定义了极尖区的位形以及相关的描述参量 (例如赤道向边界磁纬的最小值, 纬向宽度, 子午向和晨昏向的张角, 倾斜度, 扁平度, 中心磁地方时等), 讨论了太阳风动压 (*P*_d)、行星际磁场 (IMF) 及磁暴强度 对极尖区位形的影响. 太阳风动压和磁暴强度越大, 则极尖区的赤道向边界磁纬越小, 纬向宽度越大, 子午向和晨昏向的张角越大, 倾斜度越大, 扁平度越小; 南向 IMF *B_z* 越强, 则极尖区的赤道向边界磁纬越小, 纬向宽度越小, 子午向的张角越小, 晨昏向的张角越大, 倾斜度越大, 扁平度越大; 北向 IMF *B_z* 与南向 IMF *B_z* 的情况刚好相反; 极尖区的中心磁地方时受 IMF *B_y* 控制, IMF *B_y* 为正时, 极尖区向昏侧移动, 而 IMF *B_y* 为负时, 极尖区则向晨 侧移动, 并且极尖区的中心磁地方时与 IMF *B_y* 之间有着良好的线性关系. 将所得结果与前人的观测结果进行了 简单比较, 发现利用 T96 模型确定的极尖区位形与观测基本一致. **关键词** 极尖区, T96 模型, 行星际扰动

中图法分类号 P353

Variation Characteristics of Cusp Configuration Based on T96 Model

LI Hui^{1,2} WANG Chi¹ ZHANG Beichen³

1(State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190)

 $2 (\textit{Graduate University of Chinese Academy of Sciences, Beijing \ 100049})$

3(Polar Research Institute of China, Shanghai 200136)

Abstract Based on the T96 model, we obtained the topology of the Earth's cusp and defined some parameters (*e.g.*, minimum magnetic latitude of the equatorial boundary, latitudinal width, flare angels in the meridian and terminator plane, inclination, flatness, central magnetic local time) to describe its configuration. The influences of the solar wind dynamic pressure, the interplanetary magnetic field and storm intensity on the cusp's configuration are further studied. As the increasing of the solar wind dynamic pressure and storm intensity, the cusp's minimum magnetic latitude of the equatorial boundary, inclination, and the flatness all decrease, while the latitudinal width and flare

^{*} 国家自然科学基金项目 (40921063, 40974106, 40831060) 和科技部国家重点实验室专项经费共同资助 2011-04-12 收到原稿, 2011-11-14 收到修定 E-mail: hli@spaceweather.ac.cn

angles in the midnight-noon and dawn-dusk directions increase. With the increasing of southward IMF, the equatorial boundary, latitudinal width, flare angle in the midnight-noon direction and inclination all decrease, while the flare angle in the dawn-dusk direction and flatness both increase. However, the situations of northward IMF are contrary. The magnetic local time of the cusp is controlled by IMF B_y . When B_y is positive/negative, the cusp moves toward dusk/dawn side. And there is a good linear correlation between the magnetic local time and IMF B_y . By comparing to some former observational results, the cusp obtained from the T96 model is nearly in accordance with the observations.

Key words Cusp, T96 model, Interplanetary disturbances

0 引言

极尖区是地球磁层的一个重要结构. 在这里, 地 球磁力线将不同的磁层区域 (低纬边界层和等离子 体幔) 区分开, 太阳风的质量、动量和能量可以直接 向地球磁层、电离层进行输送, 同时电离层中的粒子 也可以由此进入磁鞘区 ^[1-2]. 极尖区特性及位形等 与观测所处高度有关. 早期人们利用 DMSP, DE 等 卫星数据对低高度极尖区的形态及特性等进行了大 量研究 ^[3-6]; 随着 Polar, Cluster 等轨道高度较高 卫星的运行, 研究开始关注较高高度的极尖区 ^[7-11]. 实际上在所有磁层条件下, 磁鞘区的太阳风等离子体 均可通过极尖区进入磁层和电离层, 但其过程十分动 态和复杂, 并严重受到太阳风条件的影响 ^[12].

关于极尖区的研究已持续多年,但极尖区的定义 却一直没有得到明确.在研究不同问题时对于极尖 区的定义也不尽相同^[13].Maynard^[14]认为极尖区 是地球开放磁力线的区域,从开放/闭合磁力线的边 界向极区延伸至粒子无法直接进入磁层的区域;Siscoe 等^[15]在利用 MHD 数值模拟研究极尖区位形时, 则将其定义为由于磁鞘等离子体聚集而形成的磁层 内磁场减小的区域;一些学者在利用卫星等离子体和 磁场的观测数据判定极尖区时,则将其定义为正午附 近粒子能量和密度与鞘区太阳风类似且伴随湍动局 地磁场衰减的高纬度区域^[8,13-14,16-17].

极尖区是地球磁场的开放区域,也是太阳风等离 子体直接进入地球高层大气的自由通道,对于研究太 阳风-磁层-电离层耦合过程有重要意义.对极尖区位 形变化特性的了解,有助于分析日侧极光和电离层对 太阳风-磁层相互作用的响应.由于观测条件的限制, 目前对于极尖区位形仍然没有一个清晰全面的认识. T96 模型^[18] 是根据 11 颗卫星历时 20 年的测量数据 得出的半经验模型,考虑了磁层顶位形、1 区和 2 区 场向电流以及行星际磁场向磁层的渗透等诸多因素, 以太阳风动压、行星际磁场、*Dst* 指数以及偶极倾 角为输入,可以得到此条件下的磁层磁力线模型,因 其良好效果而得到了广泛应用.本文将基于 T96 模 型,定义极尖区的位形以及相关的描述参量,讨论其 在不同行星际条件及磁暴强度下的变化,并与以往观 测结果进行简单比较.

1 极尖区位形的描述

1.1 极尖区位形定义

Newell 和 Meng^[19]利用低高度卫星 60000 多 次极区穿越事件中观测到的沉降粒子数据,统计发 现极尖区的大致区域在磁地方时正午附近,范围约 为 10:00 MLT-14:00 MLT.极尖区纬向宽度的范围 约为 1°~4°^[3,20].本文通过追踪 T96 模型的磁力线, 确定磁地方时 10:00 MLT-14:00 MLT 之间向阳侧磁 层的开放/闭合磁力线边界,并作为极尖区的赤道向 边界,如图 1 中的实线所示.在以下所有算例中,极 尖区赤道向边界磁纬差的范围是 0.5°~3.5°,与极尖 区纬向宽度的观测范围大致相当.因此,这里将极尖 区极向边界的磁纬固定为赤道向边界磁纬的最大值, 磁地方时也在 10:00 MLT-14:00 MLT 之间,如图 1 中的点线所示.本文将从实线和点线出发的地球磁 力线所围成的漏斗状区域定义为极尖区.

1.2 描述极尖区位形的参量

采用球面切片法来描述极尖区的位形.所谓球面 切片法,指的是用以地球为中心,半径为某一定值的 球面与极尖区相交,其交线即为极尖区在该半径高度

图 1 极尖区足点的位置 (MLAT 为地磁纬度, MLT 为磁地方时)

的位形.利用球面切片法可很方便地研究不同高度的极尖区位形.这里是选取距离地心 6 Re 的切片来获得极尖区位形的.在得到某高度极尖区位形后,定义如下参量来定量研究极尖区的位形及变化特性.

(1) Φ_{min}— 极尖区赤道向边界磁纬的最小值,反 映极尖区在子午向的位置.

(2) δ—极尖区赤道向边界磁纬的最大差值,反映极尖区的纬向宽度.

(3) α—由球面切片法得到的极尖区位形相对地 心在子午向张开角度的最大值,反映磁鞘粒子在子午 向进入极尖区的通道大小.

(4) β—由球面切片法得到的极尖区位形相对地 心在晨昏向张开角度的最大值,反映磁鞘粒子在晨昏 向进入极尖区的通道大小. (5) θ—极尖区中心与 GSM 坐标系下 xy 面的 夹角,反映极尖区的倾斜度,θ 越小,倾斜度越大.

(6) γ — 反映极尖区的扁平度 (β/α), γ 越大表 示极尖区越扁.

(7) MLT— 极尖区赤道向边界磁纬最小值所处的磁地方时,反映极尖区晨昏向的位置.

2 两种行星际条件下的极尖区位形

2.1 普通太阳风条件下的极尖区位形

图 2 显示的是普通太阳风条件下的极尖区位形, 图 2(a) 为三维效果,图 2(b) 为子午面的投影效果. 太阳风条件为:太阳风动压 $P_d = 5.0$ nPa;磁暴强 度 Dst = 0.0 nT;行星际磁场 $B_y = 0.0$ nT, $B_z = 5.0$ nT;偶极倾角(磁偶极子与GSM坐标系 z 轴的 夹角) $I_{\text{tilt}} = 0.0$.可以看出,此时极尖区呈明显的漏 斗状,赤道向较圆,极区向较扁平,与 x 轴夹角较大, 并关于子午面对称.当距离地心越来越远时,极尖区 截面也越来越大,在距离地心 6 R_e 时,极尖区在 x 方 向延伸至约 3 R_e ,同时, y 方向的范围约为 ±1.5 R_e .

2.2 极端太阳风条件下的极尖区位形

图 3 显示的是极端太阳风条件下的极尖区位形, 图 3(a) 为三维效果,图 3(b) 为子午面的投影效果. 太阳风条件为: $P_d = 15.0$ nPa, Dst = -300.0 nT, $B_y = 0.0$ nT, $B_z = -30.0$ nT, $I_{tilt} = 0.0$. 与普通太 阳风条件下的位形相比,此时极尖区由漏斗状变为扁 带状,赤道向和极向均较扁平,并且几乎平行于 x 轴, 也关于子午面对称. 当距离地心越来越远时,极尖区

图 2 普通太阳风条件下的极尖区位形 ($P_d = 5.0$ nPa, Dst = 0.0 nT, $B_y = 0.0$ nT, $B_z = 5.0$ nT, $I_{tilt} = 0.0$) Fig. 2 Cusp configuration under common solar wind conditions ($P_d = 5.0$ nPa, Dst = 0.0 nT, $B_y = 0.0$ nT, $B_z = 5.0$ nT, $I_{tilt} = 0.0$)

图 3 极端太阳风条件下的极尖区位形 ($P_{\rm d} = 15.0 \text{ nPa}, Dst = -300.0 \text{ nT}, B_y = 0.0 \text{ nT}, B_z = -30.0 \text{ nT}, I_{\rm tilt} = 0.0$) Fig. 3 Cusp configuration under extreme solar wind conditions ($P_{\rm d} = 15.0 \text{ nPa}, Dst = -300.0 \text{ nT}, B_y = 0.0 \text{ nT}, B_z = -30.0 \text{ nT}, I_{\rm tilt} = 0.0$)

截面也越来越大, 在距离地心 $6R_e$ 时, 极尖区在 x 方向延伸至约 $4R_e$, 同时, y 方向的范围约为 $\pm 2.0R_e$, 比普通太阳风条件下的位形要大.

针对以上两种太阳风条件,分别计算有关极尖 区的位形参量,以比较极尖区位形的区别,结果列于 表 1. 相比普通太阳风条件,极尖区在极端太阳风条 件下更靠近赤道,磁纬度从 77.1°减至 58.0°;纬向 宽度虽然略有减小,但其在子午向以及晨昏向张开 角度分别增加了 22.9% 和 83.3%,更加有利于鞘区 粒子的进入;此时极尖区更加扁平,并且与 *x* 轴的夹 角从 64.35°减至 33.41°.

3 极尖区位形与行星际条件的关系

早期研究表明,极尖区位形强烈受到太阳风驱动 控制,与太阳风动压、行星际磁场、磁扰水平及偶极

表 1	两种太阳	l风条件	下	极尖区位形式	参量的比较	

Table 1Comparison of the cusp configurationunder two kinds of solar wind conditions

位形参量	普通太阳风条件	极端太阳风条件
$arPhi_{ m min}/(^\circ)$	77.1	58.0
$\delta/(^{\circ})$	1.6	0.9
$lpha/(^\circ)$	7.39	9.08
$eta/(^\circ)$	27.18	49.81
$\theta/(^{\circ})$	64.35	33.41
γ	3.68	5.49
MLT	12:00	12:00

倾角有关.下面分别定量讨论太阳风动压、磁扰水平 以及 IMF B_z和 IMF B_y对极尖区位形的影响.

图 4 显示的是极尖区位形参量 (Φ_{\min} , δ , α , β , θ , γ) 与太阳风动压 (P_d) 之间的关系,参数 Dst =0.0 nT, $B_y = 0.0$ nT, $B_z = 0.0$ nT, $I_{tilt} = 0.0$ 并保 持不变. 可以看出,极尖区各位形参量随着太阳风 动压的增加而单调变化,赤道向边界纬度逐渐降低, 向赤道不断下移,纬向宽度略有增加并趋于饱和,倾 斜度以及子午向和晨昏向张角则不断增加. 另外,其 扁平度也略有降低. 在太阳风动压增加过程中,各参 量的变化幅度逐渐减小,表现出一定的饱和趋势. P_d 从 2 nPa 增至 20 nPa 时, Φ_{\min} 从 77.7° 减至 75.3°, 减幅为 3.1%; δ 从 1.2° 增至 1.6°,增幅为 33.3%; α 和 β 分别从 6.13° 和 26.36° 增至 8.60° 和 32.28°,增 幅为 28.7% 和 18.3%; θ 和 γ 分别从 64.83° 和 4.30 减至 61.55° 和 3.76,减幅为 5.1% 和 12.6%.

图 5 显示的是极尖区位形参量 (Φ_{\min} , δ , α , β , θ , γ) 与磁暴强度之间的关系,参数 $P_d = 2.0 \text{ nPa}$, $B_y = 0.0 \text{ nT}$, $B_z = 0.0 \text{ nT}$, $I_{\text{tilt}} = 0.0$,并保持不变. 与太阳风动压的情形相似,极尖区各位形参量随磁暴 强度的变化也具有相同的规律. 纬度和扁平度逐渐降 低,纬向宽度、倾斜度以及子午向和晨昏向张角不断 增加. 不同的是,在磁暴强度增加的过程中,各参量的 变化几乎为线性的. *Dst* 从 0 nT 变化至 -300 nT 时, Φ_{\min} 从 77.8° 减至 70.8°, 减幅为 9.0%; δ 从 1.4° 增 至 3.2°,增幅为 128.6%; α 和 β 分别从 6.57° 和 25.72° 增至 10.82° 和 31.56°,增幅为 64.7% 和 22.7%; θ 和 γ 分别从 65.28° 和 3.92 减至 57.87° 和 2.92, 减幅 为 11.4% 和 25.5%,比太阳风动压的变化幅度要大.

图 4 极尖区位形参量与太阳风动压之间的关系 (Dst = 0.0 nT, $B_y = 0.0 \text{ nT}$, $B_z = 0.0 \text{ nT}$, $I_{\text{tilt}} = 0.0$, 保持不变) Fig. 4 Relationship between the cusp construction and the solar wind dynamic pressure (Dst = 0.0 nT, $B_y = 0.0 \text{ nT}$, $B_z = 0.0 \text{ nT}$, $I_{\text{tilt}} = 0.0$ are all fixed)

图 5 极尖区位形参量与磁暴强度之间的关系 ($P_{\rm d} = 2.0$ nPa, $B_y = 0.0$ nT, $B_z = 0.0$ nT, $I_{\rm tilt} = 0.0$, 保持不变) Fig. 5 Relationship between the cusp construction and the storm intensity ($P_{\rm d} = 2.0$ nPa, $B_y = 0.0$ nT, $B_z = 0.0$ nT, $I_{\rm tilt} = 0.0$ are all fixed)

图 6 显示的是极尖区位形参量 ($\Phi_{\min}, \delta, \alpha, \beta$, θ , γ) 与 IMF B_z 之间的关系, 参数 $P_d = 2.0$ nPa, Dst = 0.0 nT, $B_y = 0.0$ nT, $I_{\text{tilt}} = 0.0$, 并保持不变. 极尖区各位形参量随 IMF B_z 呈单调变化,其中 δ, α , γ 的变化趋势与太阳风动压、磁暴强度的情形一致, 纬向宽度和子午向张角逐渐增大,扁平度逐渐减小; 而 Φ_{\min} , β 和 θ 的变化趋势与太阳风动压、磁暴强度 的情形正好相反, 纬度增加, 晨昏向张角和倾斜角降 低. 值得注意的是, 各位形参量的变化幅度与 IMF Bz 的方向有关. 当 IMF B_z 为南向时, Φ_{\min} , β , θ 以及 γ 的变化幅度要比北向时大很多, 而 δ 和 α 的变化幅 度则比北向时小很多. Bz 从 -20 nT 变化至 0 nT 时, $\Phi_{\min}, \delta, \alpha, \theta$ 分别增加了 10.8°, 0.7°, 1.55° 和 27.73°, β和γ分别减少了 18.77°和 5.46; Bz从 0nT 变化 至 20 nT 时, Φ_{\min} , δ , α 和 θ 分别增加了 1.1°, 1.5°, 3.26°和 4.14°, β和 γ分别减少了 6.29°和 2.16.

图 7 显示的是极尖区位形参量 (Φ_{\min} , δ , α , β , θ , γ) 与 IMF B_y 之间的关系,图 7(a) (b) 分别 为 Φ_{\min} 和 MLT 随 IMF B_y 的变化,其他参数分 别为 $P_d = 2.0 \text{ nPa}$, Dst = 0.0 nT, $B_z = 5.0 \text{ nT}$, $I_{\text{tilt}} = 0.0$, 并保持不变.可以看出, IMF B_y 的正负 对 ϕ_{\min} 并无影响, ϕ_{\min} 只随 IMF B_y 绝对值的增大 而降低. 正如期望的那样, IMF B_y 的正负对极尖区 所处的磁地方时具有强烈的控制作用, IMF B_y 为正 时, 极尖区向昏侧移动, 而 IMF B_y 为负时, 极尖区则 向晨侧移动, 并且极尖区所处的地方时与 IMF B_y 之 间具有良好的线性关系. 需要说明的是, 图 7 所示的 事例中, IMF $B_y = 0.0 \,\mathrm{nT}$, 故所有 MLT 均为 12:00.

Wing 和 Sibeck^[6] 以及 Newell 等^[21] 分别利用 卫星观测数据研究得到了极尖区纬度与 IMF B_z 之 间的经验公式,如图 8(a)中的虚线和实线所示,圆 圈是本文利用 T96 模型得到的结果. 当 IMF B_z 为北向时,三者符合非常好,而当 IMF B_z 为南向 时, $B_z > -10$ nT 时符合比较好,而 $B_z < -10$ nT 时,本文结果要比观测稍大. 这是由于在本文算例 中,为了显示 IMF B_z 对极尖区位形的影响,只改 变 IMF B_z 的值,而固定了磁暴强度和太阳风动压的 值.实际上,南向 IMF B_z 增大时,磁暴强度也随之增 强,会使得极尖区的磁纬进一步降低.例如,当 IMF $B_z = -15$ nT 时,考虑普通的太阳风条件 (太阳风数

图 6 极尖区位形参量与 IMF B_z 之间的关系 ($P_d = 2.0 \text{ nPa}, Dst = 0.0 \text{ nT}, B_y = 0.0 \text{ nT}, I_{\text{tilt}} = 0.0, 保持不变$) Fig. 6 Relationship between the cusp construction and the storm intensity ($P_d = 2.0 \text{ nPa}, Dst = 0.0 \text{ nT}, B_y = 0.0 \text{ nT}, I_{\text{tilt}} = 0.0 \text{ are all fixed}$)

图 7 极尖区位形参量与 IMF B_y 之间的关系 ($P_d = 2.0 \text{ nPa}$, Dst = 0.0 nT, $B_z = 5.0 \text{ nT}$, $I_{\text{tilt}} = 0.0$, 保持不变) Fig. 7 Relationship between the cusp construction and the storm intensity ($P_d = 2.0 \text{ nPa}$, Dst = 0.0 nT, $B_z = 5.0 \text{ nT}$, $I_{\text{tilt}} = 0.0$ are all fixed)

图 8 极尖区位形参量与观测结果的对比 Fig. 8 Comparison of our result with observations

密度为 8 cm⁻³, 太阳风速度为 600 km·s⁻¹, 太阳 风动压为 5 nPa), 太阳风重联电场 ^[22] E_{K-L} 约 为 9 mV·m⁻¹, 根据 Li 等 ^[23] 研究的磁暴强度与太 阳风重联电场之间的关系,可以得到对应的磁暴强 度约为 –100 nT. 由图 5 可知, 磁暴强度从 0 nT 变 到 –100 nT 时, 极尖区磁纬减小了 2.7°. 同样, 由 图 4 可知, 太阳风动压从 2 nPa 变到 5 nPa 时, 极尖 区磁纬减小了 0.9°. 综合太阳风动压和磁暴强度的 效应, 极尖区磁纬在 IMF $B_z = -15$ nT 时的真实值 需要进行 –3.6° 的修正, 应为 65.1°. 经过修正的结 果与观测结果几乎相等. 除此之外, Newell 等 ^[24] 研 究了极尖区所处的磁地方时与 IMF B_y 之间的关系, 如图 8(b) 实线所示, 也与本文结果相吻合.

总体而言,利用 T96 模型确定的极尖区位形与 观测基本一致.对卫星观测资料进行处理时,很难将

各种太阳风条件对于极尖区位形的影响区分开,只能进行统计分析,因而有一定误差.由于卫星轨道的限制,很难从全局上得到极尖区位形的特征,利用 T96 模型确定极尖区位形的方法也可以作为一种辅助手段来研究极尖区在各种太阳风条件下的形态变化.

4 结语

基于 T96 模型定义了极尖区的位形以及相关的 描述参量,讨论了其在不同行星际条件及磁暴强度下 位形的变化特征. 将所得结果与以往观测结果进行 简单比较,发现利用 T96 模型确定的极尖区位形与 观测基本一致.主要的结论如下.

(1) 极尖区赤道向边界的最小地磁纬度 (Φ_{min}) 随着太阳风动压、磁暴强度、南向 IMF B_z 以及 IMF

 B_y 绝对值的增大而显著减小,随着北向 IMF B_z 的增大而略有增大,但幅度很小.

(2) 极尖区的纬向宽度 (δ) 与太阳风动压、磁暴 强度以及 IMF B_z 正相关, 受磁暴强度以及 IMF B_z 的控制较为强烈, 对太阳风动压变化的反应较弱且会 趋于饱和.

(3) 极尖区在子午向的张角 (α) 随着太阳风动 压、磁暴强度以及 IMF B_z 的增大而显著增大,并且 北向 IMF B_z 的变化幅度远大于南向 IMF B_z 时的 情况.

(4) 极尖区在晨昏向的张角 (β) 与太阳风动压、 磁暴强度正相关, 而与 IMF B_z 负相关, 且南向 IMF B_z 的变化幅度远大于北向 IMF B_z 时的情况.

(5) 极尖区的倾斜度 (θ) 随着太阳风动压、磁暴 强度、南向 IMF B_z 的增大而增大.

(6) 极尖区的扁平度 (γ) 随着太阳风动压、磁暴 强度、南向 IMF B_z 的增大而减小.

(7) 极尖区的中心磁地方时 (MLT) 受 IMF *B_y* 控制, IMF *B_y* 为正时, 极尖区向昏侧移动, 而 IMF *B_y* 为负时, 极尖区则向晨侧移动, 并且极尖区所处的地方时与 IMF *B_y* 之间具有良好的线性关系.

参考文献

- Heikkila W J, Winningham J D. Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps [J]. J. Geophys. Res., 1971, 76:883-891
- [2] Smith M F, Lockwood M. Earth's magnetospheric cusps [J]. Rev. Geophys., 1996, 34(2):233-260
- [3] Newell P T, and Meng C I. The cusp and cleft/boundary layer: low altitude identification and statistical local time variation [J]. J. Geophys. Res., 1988, 93:14549-14556
- [4] Newell P T, Meng C I, Sibeck D G, Lepping R. Some low altitude cusp dependencies on the interplanetary magnetic field [J]. J. Geophys. Res., 1989, 94:8921-8927
- [5] Keith W R, Winningham J D, Goldstein M L, et al. Observations of a unique cusp signature at low and mid altitudes [J]. Surv Geophys., 2005, 26(1/2/3):307-339
- [6] Wing S, Newell P T, Meng C I. Cusp modeling and observations at low altitude [J]. Surv. Geophys., 2005, 26(1-3):341-367
- [7] Dunlop M W, Cargill P J, Stubbs T J, et al. The highaltitude cusps: HEOS 2 [J]. J. Geophys. Res., 2000, 105(A12):27 509-27 518
- [8] Dunlop M W, et al. Cluster observations of the cusp: Magnetic structure and dynamics [J]. Surv Geophys., 2005, 26(1/2/3):5-55

- [9] Zhou X W, Russell C T, Le G, Fuselier S A, Scudder J D.
 Solar wind control of the polar cusp at high altitude [J].
 J. Geophys. Res., 2000, 105(A1):245-251
- [10] Lavraud B, et al. Cluster observes the high-altitude cusp region [J]. Surv. Geophys., 2005, 26(1/2/3):135-175
- [11] Lavraud B, Fedorov A, Budnik E, et al. High-altitude cusp flow dependence on IMF orientation: a 3-year Cluster statistical study [J]. J. Geophys. Res., 2005, 110, A02209, doi:10.1029/2004JA010804
- [12] Lundin R. On the magnetospheric boundary layer and solar wind energy transfer into the magnetosphere [J]. Space Sci. Rev., 1988, 48:263-320
- [13] Fritz T A, Zong Q G. The magnetespheric cusps: a summary [J]. Surv. Geophys., 2005, 26:409-414
- [14] Maynard N C. Coupling the solar-wind/IMF to the ionosphere through the high latitude cusps [J]. Surv Geophys., 2005, 26(1/2/3):255-280
- [15] Siscoe G N, Crooker K, Siebert, Maynard N, Weimer D, White W. Cusp geometry in MHD simulations [J]. Surv. Geophys., 2005, 26(1/2/3):387-407
- [16] Pu Z Y, et al. Multiple flux rope events at the highlatitude magnetopause: cluster/rapid observation on 26 January, 2001 [J]. Surv. Geophys., 2005, 26(1/2/3):193-214
- [17] Zong Q G, Fritz T A, Korth A, et al. Energetic electrons as a field line topology tracer in the high latitude boundary/cusp region: Cluster RAPID observations [J]. Surv. Geophys., 2005, 26(1/2/3):215-240
- [18] Tsyganenko N A, Stern D P. Modeling the global magnetic field of the large-scale Birkeland current systems [J]. J. Geophys. Res., 1996, 101(A12), 27187-27198, doi:10.1029/96JA02735
- [19] Newell P T, Meng C I. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics [J]. *Geophys. Res. Lett.*, 1992, **19**:609-612
- [20] Burch J L. Rate of erosion of dayside magnetic flux based on a quantitative study of the dependence of polar cusp latitude on the interplanetary magnetic field [J]. *Radio* Sci., 1973, 8:955-961
- [21] Newell P T, Sotirelis T, Liou K, et al. Cusp latitude and the optimal solar wind coupling function [J]. J. Geophys. Res., 2006, 111, A09207, doi:10.1029/2006JA011731
- [22] Kan J R and Lee L C. Energy coupling function and solar wind-magnetosphere dynamo [J]. Geophys. Res. Lett., 1979, 6(7):577-580
- [23] Li H, Wang C, Kan J R. Midday magnetopause shifts earthward of geosynchronous orbit during geomagnetic superstorms with Dst ≤ -300 nT [J]. J. Geophys. Res., 2010, 115, A08230, doi:10.1029/2009JA014612.
- [24] Newell P T, Sotirelis T, Liou K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables [J]. J. Geophys. Res., 2007, 112, A01206, doi:10.1029/2006JA012015